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THEORETICAL STABILITY AND CONTROL CHARACTERISTICS OF WINGS WITH
VARIOUS AMOUNTS OF TAPER AND TWIST

By HEexrY A. Pearsox and RoserT T. JoNES

SUMNMARY

Stability derivatires hare been computed for twisted
wings of different plan forms that include variations in
both the wing taper and the aspeef ratio. Taper ratios
of 1.0, 0.50, and 0.26 are considered for each of three
aspect ratios: 6, 10, and 16. The specific deriratives for
which results are given are the rolling-moment and the
yewing-moment derivatives with respect to (a) rolling
velocity, (b) yawing relocity, and (c) angle of sideslip.
These results are given in such a form that the effect of
any iniflal symmetrical wing twist (such as may be
produced by flaps) on the derivatires may easily be taken
tnlo account.

In addition to the stability dericalives, resulis are
included for determining the theoretical rolling moment
due to aileron deflection and a series of influence lines is
given by which the loading across the span may be de-
termined for any angle-of-attack distribution that may
occur on the wing plan forms considered. The report also
ineludes incidental references to the application of the

results.
INTRODUCTION

Although a formal theory for the dynamics of air-
plane motions hag been aveailable for many years, air-
plane designers have not been in a position to utilize
this theory to its fullest advantage on account of lack
of knowledge of the basic physical quantities involved.
It is true that the physical quentities, or stability
derivatives, have been determined by test or calecula-
tion in & number of instances, but there exists no sys-
tematic series or correlation of tests sufficient to guide
the designer in the prediction of these factors.

As is well known, the calculations involved in aero-
dynamic wing theory have been developed and refined
to such an extent that it is possible to predict quite accu-
rately the air moments and forces on the isolated wing
at a fixed speed and incidence. Since several of the
airplane lateral-stability derivatives depend almost
entirely on the aerodynamic characteristics of the wing
and since it would be desirable in any case to know the
separate effects of variation of wing form on stability,
it was thought worth while to extend the calculations
to the determination of the moments developed by the
wings when the airplane is disturbed from steady flight.

This report gives theoretical stability derivatives for
a variety of wing shapes including nine different plan
forms and covering, in most cases, an arbitrary distri-
bution of twist.

Past work on the stability characteristics of wings has,
except in isolated cases, been confined to 2nalysis by the
“strip method,” wherein the effects of aerodynamic in-
duction were neglected. The main effects of the indue-
tion are included in the present computations, although
the secondary influence of distortion or curvature of the
wake is neglected.

DEFINITIONS

The axes used in specifying moments, angular veloci-
ties, etc., are fixed in the wing and therefore move rela-
tively to the air and to the earth. The X axis passes
through the wing serodynamic center in the plane of
symmetry and is so chosen as to point directly into the
line of the relative wind when the wing is moving stead-
ity. Otherwise the axes form sn orthogonzl system as
shown in the back cover of the report.

The derivatives that may be obtained enable an esti-
mate to be made of the variation of both rolling moment
and yawing moment with (1) rolling velocity, (2) yaw-
ing velocity, and (3) sideslip angle. These factors, des-
ignated by Ci,, Cs,, etc., are to be used in the following
general formulas to determine the wing rolling and yaw-
ing moment in combined rolling, yawing, and sideslip-
ping motion:

=0l 5 )+ O35 )+ Cut )
glik‘s%=c;,,(2ﬂ%)+ 0,(21%. 0,8 @)

Subscripts p and r are used to designate the partial
derivatives of the well-known wing rolling-moment and
yawing-morment coefficients, C; and C,, with respect to
instantaneous rolling and yawing angular velocities (ex-
pressed as helix angles) and g is used to designate the
partial derivatives of these coefficients with respect to
instantaneous sideslip angles. In this manner the no-
tation is considerably shortened from the usual more

. b b
cumbersome expressions (/0 (éLV)’ o0, [0 ;T,)r ete.

Expressing the rolling and yawing moments as the sums
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of partial linear factors is considered valid for motions
that are slow relative to the flight speed V and for small
displacements, such as occur in ordinary unstalled
maneuvers and such as are considered in the study of
stability.

a, angle between the zero-lift direction of the wing
section and the air velocity at infinity, radians.

6, parameter defining spanwise position, y= —% cosé

(when §=0, y= —%;-0:,‘-, y=%).

Oy, Gy, Gy, coefficients of cosine series expressing
wing plan form.

C,, rolling-moment coefficient.

C., yawing-moment coefficient.

p, angular velocity in roll, radians per sec.

r, angular velocity in yaw, radians per sec.

V, flight velocity of wing along X, {. p. s.

8, angle of sideslip, radians.

8, aileron deflection, radians.

Cy,, rate of change of rolling-moment—coefficient C,
with the helix angle pb/2V.

C.,, rate of change of yawing-moment coeflicient C,
with the helix angle pb/2V. N

C,, rate of change of rolling-moment coefficient C;
with the helix angle r5/2V.

C,,, rate of change of yawing-moment coefficient C,
with the helix angle r5/27",

Oy, rate of change of rolling-moment coeflicient C;
with sideslip angle 8.

Chg, Tate of change of yawing-moment coefficient C,
with sideslip angle 8.

C,, rate of change of rolling-moment coefficient ('
with aileron angle 8.

C,;, Tate of change of yawing-moment coefficient C,
with aileron angle &.

L, total wing rolling moment, ft.-1b.

N, total wing yawing moment, ft.-1b.

¢, dynamic pressure, lb. per sq. ft.

S, wing area, sq. ft.

¢, chord length at any section, ft.

¢, chord length at plane of symmetry, ft.

m,, section slope of the lift curve, per radian.
b, wing span, ft.
A, wing aspect ratio, 5*/S.
A, B,, O, coefficients of Fourier series.  (See
reference 2.)
¢, section lift coefficient, section lift/gedy.
Oy, wing lift coefficient, wing lift/gS.
¢aq, section profile-drag coefficient.
€a,, section induced-drag coefficient.
C»p,, wing profile-drag coefficient.

\, taper ratio: i. e., ratio of the fictitious tip chord,
obtained by extending the wing leading and
trailing edges to the tip, to the root chord.

T, dihedral angle, radians. .
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CONDITIONS RELATING TO THE COMPUTATIONS
PLAN FORMS

The particular chord distributions for which the com-
putations were made are illustrated in figure 1. Table
I gives the coefficients of the cosine series used to express
these chord distributions in terms of . Although the
quarter-chord line is shown to be straight, it is permis-
sible to apply the results to wings with similar chord
distributions but with the different plan forms that
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FIGURE 1.—Wing plan forms considered.

may be obtained by small alterations of the shape of
the quarter-chord line. The computations were made
for three aspect ratios, 6, 10, and 16, and for three taper
ratios, 1.00, 0.50, and 0.25. The wing plan forms used
only approximate those of linearly tapered wings with
rounded tips.

LIFT DISTRIBUTIONS

Rolling, yawing, and sideslipping motions introduce
varying resolutions of the relative-wind velocity over
the wing. It is evident that these variations can, to a
certain extent, be replaced by a fictitious warp or twist
of the wing in straight flight. The procedure followed
here is to calculate the spanwise lift and drag distribu-
tions for the fictitious twist (i. e., that replacing the
effect of motion) in the ordinary way, but to incline the
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Phe values of Gnr//ma given in figures 12 and 13

have been found to be in error because of the ommission _
sf a term in the expamsion of the formula for the yawing L
derivative due to yawing. The correct values for these
figures, which have been supplied by LMHAL, nay be obtained
fron the following table:

VALUES OF GCp_/a®

RS . B
] Extent of flap
] from wing
| center | ' 0.25 0.50 0.75 1.00

L

A= 0.25
6 ' 20,906 0.058 | 2®0.175 0.230
10 & 008 . 052 &,135 .220
16 & 005 .039 &.,098 147
L
A= G,50

, 5 t 89,002 | 0.060 | 20.208 | 0.364

10 ] 2.co4 .050 | 2.1s5 .284
P16 P ®,003 .089 | ®.120 .211
! T J i
i A = 1.00 .
| 6 2_0.061 |-0.059 |20.240 | 0.450

10 ! a4, 001 044 a.182 365
P 18 | a_.001 ~.035 &.149 .297
Lo Elliptical wing o
;10 .i 0,006 [o0.050 | ©0.142 | o.282 | -

&0btaired from faired curves.
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(c) A=0.25.
FicUrE 2.—Load distribution dne to unft angles of attack extending inward from the tip.

(b) A=0.50.

(a) A=1.00.
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lift and drag components so as to maintain them along
the perpendicular and the parallel to the actual local
relative-wind velocity. A further refinement of the
theory would involve the influence of the curvature of
the wing wake. Since the helix angles involved in the
motions are small (pb/2V<0.1 and rb/2V<0.1) and
since that region of the wake nearest the wing is of
predominant influence, this correction may be neglected.

Inasmuch as the various stability derivatives thus
depend upon a summation of appropriate components
of the lift and the drag loading along the span, it was
necessary to determine these distributions for each of
the wings with several different angle-of-attack distri-
butions. For this purpose the Lotz method of calcula-
tion (references 1 and 2) was used. In order to keep
the computations from becoming too lengthy, the chord-
distribution function that ocecurs in this method was
expressed by, at most, three terms of a cosine series (as
in table I). Although this expression caused the chord
distributions of the actual wings (fig. 1) to differ slightly
from those for linearly tapered wings with rounded tips,
such a procedure was justified because these slight de-
partures in plan form had only a small effect on the
characteristics but permitted a large saving in the com-
putations required. Thus only the terms near the
diagonal running through equations (19) of reference 2
entered into the computations. As the various deriva-
tives for the elliptical wing could be obtained relatively
easily, they were sometimes computed in order to deter-
mine the shape of the various derivative curves; it was
thersfore possible to use fewer points in fau'mg mmﬂar
curves for the tapered wings.

The wing theory was applied in a special way so as
to obtain results applicable to any arbitrary twist of
the wings. The theoretical span loading being a linear
function of the angle-of-attack distribution, the loading
due to arbitrary twist can be built up, as will be indi-
cated later, from certain elementary loadings by super-
position. The elementary loadings considered were
those caused by simple unit jumps of angle of attack
occurring at different points of the span.

For each of the nine tapered wings, the first 20
Fourier coefficients determining the load distributions
were computed (10 odd and 10 even) for the cases of
unit angles of attack extending inward from the wing
tip and covering various amounts of the semispan.
The rest of the wing was in eiich case assumed to be at
zero angle of attack. The portions thus covered were
0.25, 0.50, 0.75, and 1.00 of the semispan,

In spite of the great number of harmonic terms re-
tained, the conditions near the points of discontinuity
in the angle of attack required special treatment. The
problem of these end conditions has been solved by
Betz and Petersohn (reference 3) and their results were
utilized in fairing the load curves through this region.
Figure 2 shows the elementary loadings that were cal-
culated, including the modified fairing. The results
pertain specifically to the chord distributions illustrated
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in figure 1 but interpolation might be made for inter-
mediate plan forms.

It is evident that any angle-of-attack distribution,
symmetrical or unsymmetrical, may be built up of
elemental steps of the type used in deriving figure 2.
Figure 3 illustrates the procedure of finding the resultant,
load distribution. Thus, the loading contributed by
element-10 of figure 3 (a) is obtained by deducting the
load curve due to an increment of angle of attack extend-
ing between B and C from that due to an increment
extending between A and C. Although this process
could be continued until the load distribution was com-
pletely determined, the same results can be more easily
obtained from influence lines, which give the load at a
particular spanwise station due to the effect of unit
angle-of-attack changes extending inward various

i
® ¢ "E
f

(v}

- (a) Angle-of-attaok distribution.
(b) Load distribution for element (10).
FI6URE 3.—~Load components for an elamont.

amounts from the right wing tip. Such influence lines
are given in figures 4, 5, and 6 for cight evenly spaced
points across the wing semispan. Rach line was ob-

tained by cross-plotting the values of ﬂ%{ﬁ' at tho inter-

sections of the loading curves of figure 2 with vertical
lines drawn at the particular stations. (For example,
the points of intersection of line Z—Z, fig. 2 (b), with
the various curves represent the load induced at the
0.25-semispan point by uniform angle-of-attack incre-
ments that extend in varying amounts from the wing
tip. These intersections identify the corresponding
curves of figs. 4 to 6.)

In order to illustrate the use of the influence lines in
determining the lift distribution as well 2s to show the
degree of accuracy with which they may be used, the
influence lines will be applied to predict the loading for
a tapered wing (A\=0.25, A=8) corresponding to the
angle-of-attack distribution shown in figure 7 (a).
The particular angle-of-attack distribution used is
defined by the equation

Cy, 3CMg
a_(—c'"l' b sin 6

) sin 36 (3)
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This particular distribution is employed because it is
possible thereby to compute exactly the corresponding
theoretical distribution as a check, without the usual
approximations of & Fourier series. The following pro-
cedure illustrates the use of the influence lines to deter-
mine the lift at the 0.75-semispan point due to this dis-
tribution of twist: (1) The influence curve labeled
0.75 in figure 4 (c) is reproduced beneath the angle dis-
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FioURE 7.~Determination of lift distribution.

tribution to the same spanwise scale; (2) a base line
with a range from amez— t0 dtmess. is laid out as in figure
7 (¢) with the origin of the ordinates at « equal to zero;
(8) the effect of any length of elemental angle-of-attack
change, da, in figure 7 (a) is found by projecting the
length of the element onto figure 7 (b) and plotting the
increments (A;) and (A;+A4y) at the angles of attack
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for which these elements are drawn, es in figure 7 {c¢).
Because a negative angle would induce a negative load
at the point in question, A; is plotted as a negative
value. This process is continued from omes— t0 Xmers
and the resulting curve (fig. 7 (¢)} is integrated to obtain
the total effect at 0.75, which is then plotted in figure
7 (d). The load distribution over the enlire span is
obtained by repeating the same procedure for & number
of points along the span.

With the lift loading thus determined, the induced-
drag distribution may be found by a simple operation,

namely
c¢,=c;(a—%) )

Figure 7 (d) gives the comparison of the load-
distribution curve obtained from the influence lines
with that computed directly by the wing theory using
equation (3). Although the agreement is not preeise,
it must be remembered that the solid curve represents
& case where no series approximation was necessary;
hence it may be concluded that the influence-line
method of determining the lift distribution is as ae-
curate as any other for practical purposes.

Aside from other possible applications, tho load dis-
tribution may be used to determine the stability deriva-
tives for certain cases not specifically covered by the cal-
culations. In the subscquent charts, it is sometimes
necessary to stipulate either that the initial angle-of-
attack distribution be symmetrical about the wing
center line or that the dihedral angle be constant along
the span. With a knowledge of the complete load
distribution, however, values of the derivatives or their
respective moments might be found for particular cases

-1 where the charts do not apply.

STABILITY DERIVATIVES

Altl_lbugh it is possible, in the general case, to obtain
the stability derivatives from the lift distribution, such

“a procedure will not usually be necessary because the

charts to be presented cover all cases likely to be of
interest. The results are presented in such a forin that
the effect of flaps on the derivatives may easily be
determined.

ROLLING MOMENT DUE TO ROLLING

The first derivative considered is the rolling moment
due to rolling. In unstalled flight, when the wing rolls
about the longitudinal wind axis, a damping or restoring
moment is set up. This moment L,,;x, varies directly
with the angular velocity p» and is defined by the
equation

Lrortng=Ciy I gSb (%)

where the product C,‘,%’, is simply a rolling-moment
coefficient that varies linearly with the angular veloeity.
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The computed variation of the derivative (;, with
aspect ratio and taper is given in figure 8. In the usual
lift range below the stall, this derivative may be con-
sidered to be independent of either initial wing twist or
engle of attack and of the wing dihedral. In conven-
tionel cases, practically the entire damping moment for
the airplane may be attributed to the wings. It can be
seen that the moment contributed by a tail surface,
geometrically similar to the wing but with only one-
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FiGurx 8—Rolling derivative dae fo rolling. Lrentne=Ct, %QS&

fourth the span, would be s of that contributed by
the wing, inasmuch as L., for a given angular ve-
locity varies as the fourth power of a linear dimension.

Reducing the aspect ratio or increasing the taper
tends to reduce the derivative C;, as may be seen from
the curves given in figure 8. Comparison of the pres-
ent values of (', with similarly derived values given in
reference 4 indicates that the effect of rounding the
wing tips is to reduce the theoretical restoring moment
by about 6 percent for wings of aspect ratio 6.

YAWING MOMENT DUE TO ROLLING

During a rolling motion, the wing experiences a linear
antisymmetrical chenge in angle of attack along the
span and, as & result, antisymmetrical loadings are
added to those that originally were on the wing. The
resulting yawing moment is due to components of the
lift as well as to the drag along the span, the Lift com-

ponents being the more important. ith the specified
system of axes, positive rolling produces a negative
yawing moment or, for any case, with positive lift coef-
ficients the falling wing tends to advance owing to the
predominating influence of the lift vectors.

The yawing moment due to rolling, unlike the rolling

moment due to rolling, depends upon both the initial .

wing twist and the angle of attack. For untwisted
wings, however, the yawing moment is zero at zero lift
and increases linearly with the wing lift coefficient.
For a twisted wing, the yawing moment due to rolling,
although varying linearly with the over-all lift coeffi-
cient, is not necessarily zero when (% is zero but may
have either a small positive or a smsll negative value
depending upon the initial angle-of-attack distribution.
Owing to this circumstance, it is most convenient to
express the derivative C:, as a ratio in terms of unit
partial-span angle-of-attack changes. _

Figure 9 shows the computed variation of the ratio
Cy, /e for unit symmetrical angle-of-attack changes that
extend out from the wing center so as o cover various
amounts of the wing span. Thus, if it is desired to
determine C,, for an untwisted rectanguler wing of
aspect ratio 6 at an angle of attack of 0.1 radian, the
value 0.195 (for an angle of attack of 1 radian), read
from the solid line of figure 9 (a) at the relative dis-
tance of 1.0, is multiplied by 0.1 to give a value of
C., equal to 0.0195. If, now, a half-spen flap of con-
stant chord ratio were displaced an amount sufficient
to' cause an additional change in angle equal to 0.1
radian over the portion with flaps, the new value of
C,, would be

(0.1X0.195)4(0.1><0.134)=0.0329

This value of C,, is then inserted into the equation

Niotitag= a,:?%QSb (6)

1

to determine the yawing moment due to a rolling
angular velocity.

Although the curves given in figure ¢ can be directly
used to determine the effect on C,, of deflecting partial-
span flaps of constant flap-chord ratio, they are also
readily adapted to the determination of C,, for a wing

with any initial twist provided that the twist distribu-~
tion is symmetrical about the wing center line. The
process is illustrated in the following example where it
is desired to find the value of C,, for a rounded-tip
rectangular wing of aspect ratio 6 with the symmetrical
angle-of-attack distribution shown in figure 10 (a).
The contribution of the element of angle of attack de,
shown at the point «=0.15 radian, to the total value
of the wing C,, is equivalent to that caused by & full-
span elemental flap minus the contribution of the
cross-hatched portions. The contribution of this

element da is denoted by(%" « and may be obtained
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by projecting the various small flap portions onto the

appropriate Cp,/a curve (taken from fig. 9) as in figure
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10 (b), and adding the increments A; and A;. The
sum of these increments is then plotted in figure 10 (c)
at the value of &« for which the element is drawn. The
value of C,, for the complete wing is obtained by per-
forming the integration
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These curves apply to wings with symmetrical twist
and it is necessary to consider only half the wing, the
factor 2 being included in the curves. The evaluation
in the case of figure 10 (¢} yields 0.0391.
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The curves of figure 9 indicate that, for a given
angle-of-attack distribution, there is relatively little
change in the value of C, with the taper ratios investi-
gated. Changes in taper ratio did, however, have an
appreciable effect on the value of (), (fig. 8) with the
result that the ratio of the yawing to the rolling moment
in roll will, in general, increase with increase in taper.

Inasmuch as the inclination of the lift vectors at the
outer portions of the span has such a predominating
effect on the yewing moment, the most effective means
of reducing O, for a given wing lift coefficient is to
give the wings washout toward the tips.

The yawing moment due to rolling is, in conventional
designs, largely due to the wings. The tail surfaces
contribute very little to this moment both because of

approximations in deriving the necessary equations for
the determination of the yawing derivatives. Vhen
these approximations are used and the velocity along
the span is expressed as 8 variable, the new downwash
equation becomes

f'l: (C‘c)<1+§-;—,cos 9) (c,c)—T—,Sm g
41’6

cos 8—cos Gy

dé  (8)

The system of simultaneous equations derived for the
approximate solution of this integral equation is
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their short span and because of the small angles of
attack relative to the wing.

ROLLING MOMENT DUE TO YAWING

During a yawing meotion, increments of velocity are
added along the forward-moving half of the wing and
similar increments are deducted along the rearward-
moving half. The difference in velocity of the two
halves causes a rolling moment which, for an untwisted
wing, varies directly with the initial angle of attack as
well as with the angular velocity. The velocity incre-
ments vary linearly with the distance from the wing
center line and are small relative to the flight speed;
it is therefore permissible to make certain mathematical

in contrast to the system given by equation (18) of
reference 2.

By meeans of equation (9), Fourier coefficients were
computed for the nine tapered wings with two different
initial angle-of-attack distributions: (1) a distribution
due to a unit angle of attack extending over the whole
span, and (2) a unit angle of attack at the wing center
covering half the span. In order to obtfain the correct
fairing of the final curves of figure 11, similar results
were computed for elliptical wings with six angle-of-
attack distributions covering 0, 4%, ¥, ¥, %, and all of
the wing span.

As was the case with the derivative (%, it is most
convenient to give the derivative of rolling moment
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due to yawing C,, as a ratio in terms of a partial-span
unit angle of attack. The values of C;, may be ob-
tained from figure 11 and are to be inserted into the

equation

rh

Lyaw tRg™— Ol,- 2_'Vng (1 O)

By the process described in the previous section, values
of C,, may be obtained for wings with any initial twist
distribution that is symmetrical about the center line.
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The curves of figure 11 fall in the order that would
be expected for the various taper ratios, i. e., the
moment for an untwisted tapered wing would be ex-
pected to be less than that for a rectangular wing of the
same span and area because the tapered wings have a
smaller proportion of the wing area at the tip. On
account of the induced velocities along the span, the
reduction, for the tapered wings, is not so great as
would be obtained by an application of the ordinary
strip theory.

The direction of the moment is such that, with the
system of axes used, a positive rolling moment generally
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results from & positive yawing velocity when the wing
is giving positive lift. By the use of considerable
washout, such as is obtained with partial-span flaps,
it is possible not only to reduce the value of this moment
but also to make it slightly negative for low wing lift
coefficients.

As was the case with C;, and C,,, the value of C,
for the entire airplane is due almost wholly to the
wings because the side area of the airplane contributes
relatively little moment as compared with the wings
in curvilinear flight.
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YAWING MOMENT DUE TO YAWING

A part of the wing yawing moment due to yawing
results from the change in the induced-drag distribution
that accompanies the change in the lift distribution
across the span of a yawing wing. The rest of the
yawing moment is due to the difference in the distribu-
tion of profile drag resulting from the variation in
velocity along the span. Both parts, however, pro-
duce damping moments in the unstalled-flight range.

The part of the wing yawing moment due fv the
induced drag is defined by the equation

b
Nyawtua= 05,- 27'_?_,ng

(11)
where the derivative C,, may be obtained from figure 12
for certein types of angle-of-attack distribution. The
special distributions for which the derivatives of figure
12 apply are both uniform and symmetrical about the
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wing center line. Such distributions oceur only when
partial-span flaps of constant-chord ratio are deflected,
the rest of the span being at zero angle of attack., This
limitation in the applicability of these eurves as com-
pared with the previous ones is due to the fact that the
principle of superposition does not apply in cases where
the variation is not linear with «. The computed
results may, however, be used to determine the varia-
tion of (', for the most useful case, namely, that of a
wing without twist. For this purpose, the proper
values of O, /o obtained from figure 13, which is a cross
plot of the end points of figure 12, are multiplied by the
square of the actual angle of attack.

The part of the yawing moment due to the profile
drag can be determined from the easily derived equation

AN,M,=qfi c,,oc<1 +2T’}!)y dy (12)

where ¢4, and ¢ are functions of the distance y along the
span. It is possible, by assuming e, constant and by
neglecting terms of the second order, to obtain a coef-
ficient AC,, that may be used with the equation

ANyaqse=ACh, 539Sb (13)

to compute the part of the yawing moment due to the
profile drag. The values of the profile yawing mo-
ment, as given by equatlon (13), are su:ﬂiclently
accurate for most wings since ¢4, generally varies only
slightly across the span. The variation of the coef-
ficient AC, /Cp, with taper ratio is given in figure 14.
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The total wing yawing moment due to yawing is the
sum of the moments given by equations (11) and (13).
At low lift coefficients, the profile drag contributes the
greater portion of the wing damping moment in yawing.
At moderate or high lift coefficients, however, the part

due to the induced drag exceeds that due to the profile
dreg. If it is assumed that «=0.3 and Cp,=0.01, then
the respective values of C,, and AC;, would be 0.0522
and 0.0031 for a rectangular wing of aspect ratio 6.
The demping moment contributed by the wings in
yawing motion is, in most cases, secondary but is not
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negligible with respect to the damping moment con-
tributed by the fuselage and the verticel tail surfaces.
The damping in yawing due to the wings depends upon
the angle of attack as well as upon the plan form;
therefore the relative amounts contributed by the
wings and tail surfaces may vary considerably.

Although it was not possible to give a general chart
for determining the damping in yawing for symmetri-
cally twisted wings as was done with the previous deriva-
tives, it can nevertheless be said that the addition of
load toward the tips, whether by washin or by an
increase in taper ratio, would increase the wing damping
moment due to & yawing angular velocity.

ROLLING MOMENT DUE TO SIDESLIP

The manner in which the changes in angle of attack
that cause a rolling moment are brought about during
& sideslipping motion is shown in figure 15 by a sketch
of a wing having positive, negative, and zero dihedral
over various portions of the span. X¥or simplicity, the
wing is assumed to have no initial twist and the dihedral
angles are assumed constant over each of the portlons
A, B, and C. For small angles of sideslip 8, the in-
crease in angle at tip A is, to a first approximation,
equal to I'y8; whereas, at the opposite tip A’, there is
an equal decrease of the angle of attack. The portions
B—B’, having no dihedral, contribute no change in angle
of attack when the wing is sideslipping. At the center,
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however, owing to the negative angle of dihedral I', .8 I
there is an effective decrease in angle of attack over /.00 I T 7
part C equal to I'¢f and on C/ there is a similar increase ——"50T &~ 0195 ;/"j
in angle. Figure 15 shows the resulting effective /
angle-of-attack distribution for the particular shape of 7(/
dihedral assumed. Py

The effect of this distribution is similar to that caused /
by two pairs of ailerons equally and oppositely deflected 4
with the inner pair opposing the rolling action of /
those at the tip. Positive areas of dihedral on the V4
advancing wing tend to add load onto that wing. For /!
the system of axes chosen, all areas with positive
dibedral produce a negative rolling moment with a M
positive angle of sideslip. This moment, like the rolling
moment due to rall, is independent of the initial wing ol
twist as long as'noportion of the wing becomes stalled. { /

The rolling-moment derivative due to sideslip C), 7
may be determined from figure 16, which gives the /
variation of Cy/T" for various unit antisymmetrical -8 7
angle-of-attack distributions (i. e., symmetrical portions ' 4
with constent dihedral) that extend out from the wing i

. . . //

center and cover various relative amounts of the wing &
semispan. In the usual case, where the dihedral //
angle T is constant along each semispan, the value of | S
the rolling moment due to a sideslip angle g can be r

obtained from the equation 4 v
L;taes1ip=C189Sb (14) | Cu i
/

where the appropriate values of Cy/T, obtained from
figure 16 at the relative distance equal to 1.0, are multi-
plied by the dihedral angle in radians. In more L (b} —
unusual cases as, for example, where only the tips are >
turned up or where the wing is given a gull shape for g__y
any reason, it is still possible to determine a coefficient
of rolling moment due to sideslip simply by adding the
effects of the various parts in the way previously de- /
scribed. Thus, for the wing shown in figure 15, let Lo / 7
/
/

Az = 0.065

~N

A=6, A=1.0, I'y and I'r;=0.1 radian and assume that y

it is desired to find the proper value of C,, to use in / 4
/

//

equation (14). The part due to the tip portions A—A’
is A, (from fig. 16 (2)) X T,=0.195 X 0.1=0.0195. ot

The part due to the center portions C—C’ is 4; X Te= A
0.065X0.1=0.0065. The resulting value of (i to //
be used in equation (14) is thus 0.0130. The extension 6 /i
of this method to a curvilinear variation of T' along
the span may be easily made by plotting the values of
T at each point of the span and using the method given //
in & previous section for integrating for the total effect.

The results of figure 16 indicate that equivalent /
angle-of-attack changes caused by unit lengths of A
dihedral portion near six-tenths of the relative distance Y
from the tenter are, in general, slightly more effective -2 4
in producing rolling moment than unit lengths of di- ) Z \
hedral at the tips. Such a result is due partly to the Rool L=z (C;.
fact that the load curves near the tips are rounded and l__f\/ | ,
partly to the fact that, for the tapered wings, the larger g 2 A4 .6 .8 10
areas affected by lengths of dihedral near the 0.6 point E"‘;’;}}g’,’,‘,,,,i’ﬁ’ﬁf!;‘}’aﬁ;ﬁ'% o
tend to compensate for the shorter moment arms (8) A=. (b} Am10, (©) A=18.
through which the change in loading acts. F16URE 18.—Rolling derivative due to sideslip with dibedral. Zuiteiis= Cip8g S
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Although, during a sideslipping motion, positive
dihedral produces a righting moment, a similar though
generally smaller effect may also be produced by the
addition of vertical area above the longitudinel wind
axis. Also, on account of interference effects, the
proportion of the sirplane rolling moment contributed
by the wings may vary considerably with the external
appearance of the airplane.

It is usually considered, in prectice, that a straight
wing will have some dihedral effect, but tests of wings
with well-rounded tips (reference 5) do not support this
view. In cases of wings with blunt tips or in cases
where chords of the sections near the tip do not lie in
one plane, some dihedral action is shown.
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FiGuRe 17.—Comparison between experimental and computed valtes of CiyfT (ox-
perimental data from referenca ¥).

Figure 17 shows a comparison of experimentsl and
computed values of Ciy/T. The experimental values
have been obtained from figure 28 of reference 5 and the
coefficients given therein have been converted to the
form used in this report. In the tests reported in
reference 5, & rounded-tip rectangular wing of aspect
retio 6 was given various lengths of dihedral by turning
up the outer portions of the wing. Each wing was then
tested throughout the angle-of-attack range for various
sideslip and dihedral angles.
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It will have been apparent from the preceding dis-
cussion that the results of figure 16 may also be applied
to predict the rolling moment caused by an aileron
deflection in unyawed flight since ailerons, equally and
oppositely deflected, cause changes in the angle-of-
attack distribution that are similar to the changes
caused by dihedral. Strictly speaking, however, the
change in angle of attack due to dihedral cannot have
quite the same effect as a similar change produced by
ailerons because the ordinary lifting-line theory, when
applied to yawed or sweptback wings, omits the effect
of the stagger of the trailing vortices and the inclination
of the bound vortex. Although the present theory has
not been modified to take this effect into account, there
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FIGURE 18.—Variation of £ with ratio of flap or afleron chord to wing chord.

is ample justification for omitting it in the computa-
tions as experiments indicate only second-order differ-
ences (see reference 5) for the usuval angles of yaw and
sweepback.

For the computation of the rolling moment due to an
aileron deflection 5, the appropriate value of (' to be

inserted in the equation

Latlcrmu= Ol;aqu (1 5)
may also be found from figure 16. The derivative O,
is given as a ratio in terms of %, the theoretical change
of « with aileron deflection. Although the value of %
has been theoretically determined for thin wings, it is
better to use values of k£ determined from an analysis
of experimental data. For this purpose, figure 18 is
included, which shows the variation of & for values of
the ratio of aileron or Bap chord to wing chord up to
0.3. This variation of & has previously been given in
figure 11 of reference 6 and holds for sealed flaps deflected
up to approximately 20°.



466
&
dd

A N tl\

A LY

A A

A .}

A 1

Tio A‘ —!
tfar l Tip

(2

A 8 C
A 7] ]
AT K
Al A
A A
1 A
| - M |
| 1
[ ! 1
= —
! /)
\ y ;
N I/
’ A
-
) ”
| TGy
| S

h l
m\\

(a} Aflerons deflected equally.
(b) Aflerons deflected differentlally.
FIGURE 19,—Additlon of effect of alleron elementa.

7V
TV egeTpay
. B )
( ﬂ i ! I4lcd,chy
{
]
l l Plan view l i
| \
Iy it
H €, QCGTU" \
| |l [ \I
/ \
I

Front view
FIGURE 20.—Actlon of dihedral In producing yawing moment in sideslip.

If the angle-of-attack change caused by deflecting
the ailerons is antisymmetrical about the wing center
line, the proper value of (' to be used with equation
(15) (for the rolling moment only) can be found by an

REPORT NO. 635—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

integration or summation of the effects of elemental
ailerons of various lengths and positions along the span
as indicated in figure 19 (2). The values of Cyfk are
obtained from figure 16 for the wing plan form used.
If the ailerons are differentially operated, then it may
be better to divide the ordinates of figure 16 by 2 and
to determine the value of the moment given by cach
aileron as indicated in figure 19 (b). ,

YAWING MOMENT DUE TO SIDESLIP

The yawing moment of a wing with dihedral in side-
slipping motion may be conveniently divided into two
parts, the first part being due to the unsymmetrical
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induced-drag distribution over the span and the second
part due to a shift of the lift vectors acting so as to pro-
duce a moment about the vertical axis. Figure 20 illus-
trates the components of the section lift and drag
vectors that produce yawing moments. The advanced
wing having the larger lift will also have a larger induced
drag and hence & component moment is set up that tends
to turn the wing so as to reduce the sideslip; at the same
time, however, the contrary moment due to the com-
ponents of the lift acts to advance the forward hsalf of
the wing still more. As was the case with the yawing
derivative due to rolling, the moments caused by the lift
components predominate and, as a result, the net
theoretical moment is an unstable one; or, in other
words, with the system of axes chosen, a negative
yawing moment results when the dihedral and sideslip
angles are positive.

The explanations advanced in some textbooks neglect
the inward slope of the lift vectors and lead to an incor-
rect sign of the yawing moment.

The yawing moment in sideslip is given by the equa-
tion

erdn p=— O‘uquSb (16)

The derivative Cy, is given In figure 21 as a ratio in

terms of I'a because its value depends linearly upon the
magnitude of the product of these variables. The
values of 0,3/ T have been computed for unit symmetri-
cal angle-of-attack distributions that extend out on
either side of the center line and cover 0.25, 0.50, 0.75,
and all of the wing span. These curves may be used to
determine values of 0,,3 for any initial angle-of-attack

distribution symmetrical about the wing center line,
provided also that the angle of dihedral is constant
across the wing span. Although the rolling derivative
due to sideslip can be obtained (from fig. 16) for a curvi-~
linear variation of dihedral along the span, it is necessary
to stipulate that either o or I' remain constant if the
principle of superposition is to be applied in the deter-
mination of C, - The combination of variable symmet-
rical twist and uniform dihedral being more common
than the converse, the computations were shortened by
including curves for only the case of uniform dihedral.

The resultant value of C.y (to be used in equation
(16)) is found by either an integration or a summation
of the effects of elements of angle of attack extending
along the span. The process to be followed where
graphical evaluation is necessary has been illustrated
in figure 10, with the ordinates of figure 10 (a) chenged
to T'a. The ordinates and abscissas of the remaining
parts are to be changed as required. For untwisted
wings with uniform dibedral, the value of C,,/Tea is
obtained by multiplying the value read at a relative
distance of 1.0 by the wing angle of attack and, in
turn, by the dihedral angle.

The curves of figure 21 being generally steeper be-
yond the 0.5 point, the deduction of increments of

angle of attack at the tip, i. e., giving the wing wash-
out, would be the simplest means of decreasing the
unstable yawing moment caused by the wings in a
sideslipping motion.

Although the predicted variation of the yawing
moment with dihedral is confirmed, experiments show
a residual stable yawing moment at zero dihedral that
is not predicted by the ordinary theory. This residual
moment is greater for wings with blunt tips and is
greater at zero or negative lifts. It will be noted that
the theoretical yawing moment is itself the small re-
sultant of two large contrary effects and is thus of the
same order as a number of possible secondary influences.

LaNeLEY MEMORIAL AERONAUTICAL L:ABORATORY,
NarioNar ApvisorY COMMITTES FOR AERONAUTICS,
LawerEy Fiewp, Va., April 19, 1988.
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